Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors

Identifieur interne : 001D24 ( Main/Repository ); précédent : 001D23; suivant : 001D25

Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors

Auteurs : RBID : Pascal:12-0179188

Descripteurs français

English descriptors

Abstract

A new solution processable small molecule (DPP-CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64 eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP-CN:PCBM, DPP-CN :F and DPP-CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (Jsc) and open circuit voltage (Voc). The PCE value of the photovoltaic devices based on the blends DPP-CN:PCBM, DPP-CN:F and DDP-CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of Jsc, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP-CN:A (DIO/THF cast)/TiO2/ Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO2 buffer layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0179188

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors</title>
<author>
<name sortKey="Sharma, G D" uniqKey="Sharma G">G. D. Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Molecular Electronic and Optoelectronic Device Laboratory, JNV University</s1>
<s2>Jodhpur, Rajasthan 342005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Jodhpur, Rajasthan 342005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>R&D Center for Science and Engineering, Jaipur Engineering College, Kukas</s1>
<s2>Jaipur, Rajasthan</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Jaipur, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mikroyannidis, J A" uniqKey="Mikroyannidis J">J. A. Mikroyannidis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Chemical Technology Laboratory, Department of Chemistry, University of Patras</s1>
<s2>26500 Patras</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>26500 Patras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, S S" uniqKey="Sharma S">S. S. Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Engineering Physics, Govt. Engineering College for Women</s1>
<s2>Ajmer, Rajasthan</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Ajmer, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roy, M S" uniqKey="Roy M">M. S. Roy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Defence Laboratory</s1>
<s2>Jodhpur, Rajasthan</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Defence Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Justin Thomas, K R" uniqKey="Justin Thomas K">K. R. Justin Thomas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Organic Materials Lab, Department of Chemistry, Indian Institute of Technology</s1>
<s2>Roorkee, Uttrakhand</s2>
<s3>IND</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Roorkee, Uttrakhand</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0179188</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0179188 INIST</idno>
<idno type="RBID">Pascal:12-0179188</idno>
<idno type="wicri:Area/Main/Corpus">001F24</idno>
<idno type="wicri:Area/Main/Repository">001D24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Buffer layer</term>
<term>Butyric acid</term>
<term>Conversion rate</term>
<term>Doped materials</term>
<term>Electron donor</term>
<term>Energy conversion</term>
<term>Energy gap</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Heterojunction</term>
<term>Indium oxide</term>
<term>Mixed solvent</term>
<term>Morphological changes</term>
<term>Open circuit voltage</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Photovoltaic cell</term>
<term>Polymer blends</term>
<term>Short circuit currents</term>
<term>Small molecule</term>
<term>Styrenesulfonate polymer</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Titanium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hétérojonction</term>
<term>Dispositif photovoltaïque</term>
<term>Donneur électron</term>
<term>Cellule solaire organique</term>
<term>Bande interdite</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Courant court circuit</term>
<term>Tension circuit ouvert</term>
<term>Solvant mixte</term>
<term>Changement morphologique</term>
<term>Addition étain</term>
<term>Evaluation performance</term>
<term>Molécule petite</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Oxyde de titane</term>
<term>Couche tampon</term>
<term>Matériau dopé</term>
<term>ITO</term>
<term>TiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new solution processable small molecule (DPP-CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64 eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP-CN:PCBM, DPP-CN :F and DPP-CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (J
<sub>sc</sub>
) and open circuit voltage (V
<sub>oc</sub>
). The PCE value of the photovoltaic devices based on the blends DPP-CN:PCBM, DPP-CN:F and DDP-CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of J
<sub>sc</sub>
, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP-CN:A (DIO/THF cast)/TiO
<sub>2</sub>
/ Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO
<sub>2</sub>
buffer layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHARMA (G. D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIKROYANNIDIS (J. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHARMA (S. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROY (M. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JUSTIN THOMAS (K. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, Molecular Electronic and Optoelectronic Device Laboratory, JNV University</s1>
<s2>Jodhpur, Rajasthan 342005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>R&D Center for Science and Engineering, Jaipur Engineering College, Kukas</s1>
<s2>Jaipur, Rajasthan</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Chemical Technology Laboratory, Department of Chemistry, University of Patras</s1>
<s2>26500 Patras</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Engineering Physics, Govt. Engineering College for Women</s1>
<s2>Ajmer, Rajasthan</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Organic Materials Lab, Department of Chemistry, Indian Institute of Technology</s1>
<s2>Roorkee, Uttrakhand</s2>
<s3>IND</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Defence Laboratory</s1>
<s2>Jodhpur, Rajasthan</s2>
<s3>IND</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>652-666</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000509646350170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0179188</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A new solution processable small molecule (DPP-CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64 eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP-CN:PCBM, DPP-CN :F and DPP-CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (J
<sub>sc</sub>
) and open circuit voltage (V
<sub>oc</sub>
). The PCE value of the photovoltaic devices based on the blends DPP-CN:PCBM, DPP-CN:F and DDP-CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of J
<sub>sc</sub>
, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP-CN:A (DIO/THF cast)/TiO
<sub>2</sub>
/ Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO
<sub>2</sub>
buffer layer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Donneur électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electron donor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Donador electrón</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Solvant mixte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mixed solvent</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Disolvente mixto</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Changement morphologique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Morphological changes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Molécule petite</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Small molecule</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Molécula pequeña</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>31</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>14</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>14</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>14</s5>
</fC07>
<fN21>
<s1>135</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001D24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0179188
   |texte=   Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024